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Abstract. A visual stimulus consisting of two alternating images, presented with an
intermediate blank phase between each image, each showing a pair of illuminated spots located
at opposite corners of an imaginary rectangle, will evoke the percept of either a horizontal or a
vertical apparent motion, called ‘stroboscopic alternative motion’ (SAM). Psychological analyses
have revealed that subjects can perceive only one of the two directions of motion at a time,
favouring the direction along the shorter edge of the rectangle, but report spontaneous changes
between the alternatives. If the stimulus configuration is gradually modified during stimulus
presentation so that the preferred direction of motion changes from horizontal to vertical, or
vice versa, subjects normally experience a corresponding change of their percept. This change,
however, usually occurs with hysteresis, i.e. when the stimulus is significantly beyond its
symmetric configuration. In this paper a microscopic neural model is presented which reproduces
the main psychological findings. Its essential ingredients are simple motion detectors based on
spatiotemporal receptive fields and an inhibition of detectors tuned to orthogonal directions of
motion. The response of our network to the SAM stimulus is a high activity of either the detectors
tuned to horizontal motion or those tuned to vertical motion, signalling a unique percept. In
agreement with experimental studies, the preferred direction of motion is along the shorter edge
of non-symmetrical stimuli and perceptual changes occur with hysteresis for a gradually changing
stimulus configuration. We finish our argument by developing a mathematically tractable two-
neuron model that captures the essentials of the above setup.

1. Introduction

An increasing number of publications are concerned with the psychological and
physiological processes relevant to the perception of ambiguous figures. An ambiguous, or
ambivalent or reversible, figure is a visual stimulus configuration that is consistent with two
or more different perceptual interpretations at the same time. Probably the most prominent,
and oldest, example is the Necker cube (Necker 1832, see figure 1, left panel), which appears
to the observer as the perspective of a cube as seen from above or below, respectively. Apart
from ambivalent figures based on a perspective inversion there are different ones which are
reversible due to figure-ground or semantic ambiguities (cf Jastrow 1900, Wallach and
Austin 1954, Botwinick 1961, Bugelski and Alampay 1961, Rubin 1921, Attneave 1971,
Rock et al 1994). Examples can be found in figure 1.

As to the perception of reversible figures, experimental analyses have revealed three
different phenomena. These are theuniquenessof stimulus interpretation, i.e. at a given
time a subject can perceive only one of the possible meanings of the stimulus,spontaneous
changesof the interpretation (Marbe 1893, Eichler 1930, Köhler 1940, K̈ohler and Wallach
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Figure 1. Examples of reversible figures. Left panel: perspective of a cube as seen from above
or below (Necker 1832). Centre panel: young or old lady (Hill 1915, ‘My wife and my mother
in law’). Right panel: vase or two faces (after Rubin 1921).

Figure 2. Hysteresis. The place of the perceptual
change is dependent on the direction in which the
sequence of images is viewed. Taken from Ditzinger
and Haken (1989), p 282, figure 5 (copyright: Springer-
Verlag).

1944, Orbachet al 1963, Stadler and Erke 1968, Pöppel 1982) andhysteresis(Wertheimer
1923, Epstein and Rock 1960, Attneave 1971, Kawamoto and Anderson 1985). Hysteresis
is found if, instead of a single reversible figure, a series of images is presented ranging from
an unambiguous stimulus over different ambivalent versions to another unambiguous figure.
Usually under this condition subjects experience a change of their percept only shortly before
the second unambiguous stimulus is reached. The same is true if the sequence of images is
reversed. Figure 2 shows an example.

Experiments concerning the ‘stroboscopic alternative motion’ (henceforth SAM) have
demonstrated that ambiguity is not restricted to static visual stimuli (von Schiller 1933,
Hoeth 1968, Ramachandran and Anstis 1983, Ramachandran and Anstis 1985, Kruseet al
1986, Ramachandran 1992, Hocket al 1993). SAM is evoked by a stimulus consisting of
two images presented alternatingly with a short intermediate blank phase, each showing two
illuminated points located at opposite corners of an imaginary rectangle (figure 3, top panel).
It conveys the impression of a pair of points oscillatingeither horizontally or vertically
(figure 3, centre panel). Under certain circumstances the observer might also see a rotation
(figure 3, bottom panel).

In analogy with ambivalent figures one finds that the interpretation of the SAM by
the visual system at any given time is unique but undergoes spontaneous changes between
the alternatives. Furthermore, if the stimulus geometry is asymmetric, i.e. the imaginary
rectangle is not a square, subjects seem to favourably perceive motion along its shorter
edge; the remaining possibilities are suppressed but still not excluded. When the aspect
ratio of the stimulus is continuously varied during presentation, hysteresis occurs. With
an initial geometry with one edge being much shorter than the other one the observer will
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Figure 3. Stroboscopic alternative motion (SAM): the
visual interpretation of two alternating images as shown
in the top panel can lead to different motion percepts
given in the remaining panels.

normally find the points oscillating along this preferred direction. In the course of the
stimulus modification to a final configuration with an inverted aspect ratio, however, he will
experience a change of his percept such that the points are again moving along the shorter
edge. Usually this change of percept occurs at a time when the stimulus is already beyond
its symmetric configuration, which is what the term ‘hysteresis’ refers to.

Since the phenomena described above are similar for the perception of reversible figures
and the SAM, two processes that are quite different at first glance, their investigation is a
promising way of achieving new insights into fundamental aspects of neural data processing.
In fact, many or even most of the data that are to be handled by the neural system are
ambiguous. It therefore seems to be a plausible assumption that for their interpretation
similar structures have evolved in different areas of the neural system that are concerned
with perception.

Many of the more recent analyses of visual ambiguity accept as a premise the ability
of the central nervous system to find unambiguous stimulus interpretations and concentrate
on mechanisms that might lead to spontaneous or oscillatory changes between different
interpretations. The discussed theories comprise stochastic (Borsellinoet al 1972, Taylor
and Aldridge 1974, DeMarcoet al 1977, Borsellinoet al 1982), cognitive (Girguset al
1977, Rock and Mitchener 1992, Rocket al 1994), and deterministic models (Köhler 1940,
Köhler and Wallach 1944, Howard 1961, Orbachet al 1963, Spitz 1963, Stadler and Erke
1968, Erke and Gräser 1972, Long and Toppino 1981, Toppino and Long 1987, Ditzinger
and Haken 1989, 1990).

A somewhat different approach is to ask the question: ‘What are the necessary structures
for a neural system to manage the important task of forming a consistent representation of
the outside world from the total input of external stimuli?’ To answer this question, it might
be helpful to develop neural models of the perception of selected examples of ambivalent
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stimuli. Such models should be based on functional units that have already been studied
and are well understood. Predictions of the models concerning perceptual changes and
hysteresis can then be used for comparisons with experimental data.

In what follows we present a neural network model of the SAM perception. An abstract
approach to this topic has been published recently by Carmesin and Arndt (1996). In contrast
to this work, we develop a microscopic model, which is kept as close as possible to the
biological data. In response to the SAM stimulus our network signals either a horizontal or a
vertical motion, dependent on the stimulus geometry, and it reproduces hysteresis when the
stimulus configuration is continuously varied during the presentation period. The essential
ingredients of the model are motion detectors with spatiotemporal receptive fields that are
qualitatively similar to those described by Wimbaueret al (1994, 1996).

2. The network

2.1. Motion detectors

In their analyses, Wimbaueret al (1994, 1996) have demonstrated how motion-sensitive
cells selective to both direction and velocity can emerge in the visual cortex from a Hebbian
learning rule. In short, they have shown what the spatiotemporal receptive fields of these
cells may look like; see also DeAngeliset al (1995) for experimental data. The mode of
operation of such a motion detector can be illustrated by a neuron which receives input from
a large number of positions on the retina, each via a large amount of parallel connections.
Its output is therefore not determined by the illumination of a single point within the visual
field but rather by the stimulus distribution over an extended receptive field. Moreover,
each stimulus on the retina is multiply transmitted to the neuron with different delays along
the parallel connections. Figure 4 is a schematic sketch of a cell connected four times to
each of three positions on the retina.

Since the number of synapses is very large, their spatial distribution combined with

input (from retina)

neuron

output

Figure 4. Schematic representation of a neuron
which could be tuned to work as a motion detector.
Each stimulus is transmitted from the input layer
to the neuron along four parallel connections with
different delays.
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the distribution of delay times is usually approximated by a continuous functionξ(x, t),
the spatiotemporal receptive field. The value ofξ(x, t) is to be interpreted as the synaptic
weight of a stimulus which is located at a positionx within the receptive field and reaches
the detector after a timet has elapsed.

The membrane potential of a cell at a given timet is the weighted sum of all signals
arriving at the soma at that time. It can be written in the form of a convolution

h (x, t) =
∫ t

−∞
dt ′
∫ ∫

d2x ′ ξ
(
x′ − x, t − t ′) s (x′, t ′) (1)

wherex and s (x, t) denote the position of the receptive field on the retina and the time-
dependent stimulus distribution, respectively.

The neural model presented here is based on rate-coding neurons with receptive fields
which are qualitatively similar to those proposed by Wimbaueret al (1996), but are slightly
idealized. They are composed of a spatiotemporal partξ1(x, t,v) multiplied by a purely
spatial partξ2(x,v)

ξ (x, t,v) := ξ1 (x, t,v) ξ2 (x,v) .

In what follows we letx := (x, y). In our modelξx+1 for a motion detector tuned to a
stimulus velocityv in positivex-direction (indicated by the upper index ‘x+’) is then given
by

ξx+1 (x, t, v) :=



−ξ0
v

2σ
if −2σ < v (t − t0)+ x 6 −σ

or σ < v (t − t0)+ x 6 2σ

ξ0
v

2σ
if −σ < v (t − t0)+ x 6 σ

0 otherwise

(2)

andξx+2 reads

ξx+2 (x, y, v) :=


exp

(
− x

2

σ 2
‖
− y2

σ 2
⊥

)
if −v tcut < x < 0

0 otherwise.

(3)

Three main ideas have entered the definition ofξ2. First, there must be some kind of cut-off
at some upper bound ofx since otherwise the neuron would need connections with negative
delay times. For this upper bound we have chosenx = 0. Second, assuming that there is
not only a minimal but also a maximal signal delay time we have introduced another cut-off
at a lower boundx = −v tcut. Third, we assume the receptive field of a motion sensitive cell
to become gradually weak in the outer regions. To be explicit, we use a two-dimensional
Gaussian profile, although our model does not rely on this specific form. Figure 5 illustrates
the ansatz

ξx+ (x, y, t, v) = ξx+1 (x, t, v) ξx+2 (x, y, v) (4)

for two different values of the velocityv with t0 = 30 ms andtcut = 240 ms.
Using equation (1) one can now derive the membrane potential of a motion detector for

any given stimulus distribution. This membrane potential, however, is not the output the
neuron provides for further processing. Whereas in biological neural systems information
is transmitted in the form of well-separated action potentials called ‘spikes’, our model
uses a rate coding, i.e. the neural outputA is a continuous quantity proportional to an
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Figure 5. Grey-level plots of the spatiotemporal receptive fieldsξx+(x, y, t, v) of two model
neurons sensitive to motion along the positivex-direction at different velocitiesv and fory = 0
(after Wimbaueret al 1996). A light or dark shading indicates a positive or a negative coupling
ξx+, respectively, whereas the grey level filling most of the plots meansξx+ = 0. The delay time
t is given in milliseconds along the vertical axis, the horizontal axis specifies thex-component
of the retinal stimulus position in arbitrary units. In our network model this spatial extension
of the receptive fields has to be chosen sufficiently large, so that at least some of the neurons
can ‘see’ neighbouring points of the SAM stimulus. The parameterst0 and tcut have been set
to 30 ms and 240 ms, respectively. While the delay time goes up to about 300 ms for both
neurons, the receptive field of the motion detector tuned to a higher velocity (right panel) spans
a larger distance on the retina. However, at larger distances its amplitude quickly decreases
according to a Gaussian, cf equation (3).

effective firing rate. Information which may be encoded in theexact temporal sequence
of a biological spike train is neglected. As a gain function, we use a nonlinear sigmoidal
transfer function

A (h) := 1
2 {1+ tanh[β (h− θ)]} (5)

with a noise parameterβ and a thresholdθ to calculate the effective firing rateA of a cell
from its membrane potentialh.

To demonstrate that the motion detectors introduced so far are not only sensitive to
a continuous stimulus motion across their receptive field but also to the apparent motion
inherent in the SAM, we have analysed their behaviour in the presence of a ‘jumping’
point-like stimulus. The left panel of figure 6 shows a grey-level plot of the time-dependent
membrane potential of a motion detector for positivex-direction evoked by a stimulus
consisting of an illuminated point at a positionx = (−0.22, 0) that vanishes at the timet = 0
and is replaced att = 50 ms by another illuminated point at the positionx = (−0.02, 0).
For t < 0 as well as fort > 50 ms the stimulus is constant, i.e. it is switched on att →−∞
and turned off att → +∞. As before, we have sett0 = 30 ms andtcut = 240 ms. The
parameterv is the velocity of the motion to which the neuron is tuned. Using expression (5)
with appropriate values ofβ and θ one can convert the membrane potential to the firing
rateA as plotted in the right panel of figure 6 forβ = 30 andθ = 0.65.
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Figure 6. The left panel shows a grey-level plot of the time-dependent membrane potentialh

of a motion detector for positivex-direction evoked by a stimulus consisting of an illuminated
point at a positionx = (−0.22, 0) that vanishes at the timet = 0 and is replaced att = 50 ms
by another illuminated point at the positionx = (−0.02, 0). As before, we have sett0 = 30 ms
and tcut = 240 ms. The parameterv is the velocity of the motion to which the neuron is tuned.
Using expression (5) withβ = 30 andθ = 0.65 the membrane potential can be converted to
the firing rateA(h) plotted in the right panel.

2.2. Wiring

Physiological studies have shown that at least the primary visual cortex is organized as
a neural map of the retina, i.e. adjacent neurons in the cortex receive their input from
adjacent receptive fields on the retina. For this reason one can, as we shall do throughout
what follows, identify the ‘position’ of a neuron with the position of its receptive field on
the retina if the relevant region of the cortex is small enough.

The network we have developed is designed to model a small, quadratic patch of the
visual cortex. The modelled area is divided into 10×10 fields, each containing 320 neurons,
namely 4× 80 motion sensitive cells tuned to different velocitiesv and dedicated to the
positivex-, negativex-, positivey-, and negativey-direction. The sizes of their receptive
fields parallel and orthogonal to the direction of preferred motion are defined by equation (3)
asσ‖v andσ⊥v, respectively, whereσ‖ andσ⊥ are model parameters. To ensure that the
apparent motion of the SAM can be resolved, they have to be chosen sufficiently large
such that a few of the motion detectors can ‘see’ neighbouring corners of the rectangular
stimulus. As a consequence, adjacent receptive fields normally show a very large overlap.

Up to now, we only have a set of motion detectors working independently of one
another. Due to the lack of unambiguous experimental results concerning their mutual
interactions one has to rely on plausible assumptions. We have decided to introduce a
reciprocal inhibition oforthogonaldirections, i.e. cells sensitive to horizontal and vertical
motion inhibit each other (through interneurons), whereas neurons sensitive to motion along
parallel or antiparallel directions are left unconnected. This is similar to the mexican-hat-
like distribution of weights, which Somerset al (1995) used in their model of orientation
selectivity in the visual cortex of cats. In addition, we assume the inhibitory contribution
that one cell receives at a timet from the activity of another cell at an earlier timet ′ to
depend on their relative distance and to decay exponentially with elapsed time(t − t ′).

With h(x′,v′, t ′) denoting the membrane potential of a neuron located at positionx′
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and tuned to velocityv′ the inhibitory input q(x,x′,v′, t) this neuron induces at timet to
a cell at positionx with v ⊥ v′ can therefore be written in the form

q
(
x,x′,v′, t

) = ∫ t

−∞
dt ′ µ

(∣∣x′ − x∣∣) exp

(
− t − t

′

τ

)
A
[
h
(
x′,v′, t ′

)]
(6)

where τ is the decay time andµ(|x′ − x|) the weight of inhibition as a function of
distance. The membrane potential of any neuron is given by the stimulus input according
to equations (1), (2) and (3) minus the sum of inhibitory contributions from all the detectors
dedicated to orthogonal directions. In the present context, direct excitatory connections can,
and have been neglected. As before, let us use upper indices to indicate the direction of
motion to which a cell is sensitive. Then we have

hx±,y± (x, v, t) =
∫ t

−∞
dt ′
∫ ∫

d2x ′ s
(
x′, t ′

)
ξx±,y±

(
x′ − x, v, t − t ′)

−
∑
x′,v′

qy+,x+
(
x,x′, v′, t

)−∑
x′,v′

qy−,x−
(
x,x′, v′, t

)
(7)

which is a system of integral equations with one equation per neuron and each neuron
characterized by its positionx, velocity v, and directionx±, y±.

To fix µ(x) we assumed that in biological systems the spatial variation in the strength
of inhibitory connections is basically determined by the spatial distribution of a neuron’s
synapses. This distribution might well be the result of a process similar to random walk
which takes place when the neuron builds up its dendrites. Thus, a reasonable choice for
µ is a Gaussian

µ (x) := µ0 exp

(
− x2

σ 2
inh

)
(8)

if the width σinh is chosen appropriately. Since we model only a small region of the visual
cortex which is almost fully covered by the SAM stimulus, we apply values ofσinh larger
than the size of the network. In this way we ensure that a sufficient interaction is established
between cells excited by different parts of the stimulus.

3. Simulation

To investigate the properties of the network described above, we used the stimulus of the
SAM but with an aspect ratio varying periodically. Each of the two images was presented for
a period corresponding to 200 ms in real time and an intermediate blank phase corresponding
to 50 ms was inserted before switching to the next image. The length of the horizontal
edge of the stimulus which is relatively short at the beginning (figure 7, left panel) increases
gradually, while the vertical distance decreases simultaneously. Once the stimulus takes its
second extreme configuration with a short vertical edge (figure 7, right panel) the process
reverses and starts anew when the initial state is reached again.

Figure 7. The two extreme configurations of the stimulus of the
stroboscopic alternative motion (SAM) presented to the model network.
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Figure 8. Upper panel: lengths of the horizontal and vertical edges of the SAM stimulus
as a function of time and in arbitrary units. Centre and lower panels: mean activity of all
detectors of horizontal and vertical motion, respectively. It can be seen that either detectors
of horizontal or detectors of vertical motion show a high activity and that a high activity of
one network component causes at the same time a suppression of the other component. If the
stimulus configuration is highly asymmetric, the detected apparent motion is oriented along the
shorter edge of the stimulus. Transitions between the two states showhysteresis, i.e. they occur
when the stimulus is significantly beyond its symmetric configuration (which is indicated by the
dashed vertical lines).

The network response is illustrated in figure 8. The upper panel displays the lengths of
the horizontal and vertical edges of the stimulus as a function of time and in arbitrary units.
The middle and the lower panel show the mean activity of all detectors of horizontal and
vertical motion, respectively. The results are in accordance with the experimental findings
presented in section 1.

• Either detectors of horizontal or detectors of vertical motion show a high activity.
A high activity of one network component causes a simultaneous suppression of the
other component. The stimulus interpretation achieved in this way is unambiguous
except for short time intervals, during which a transition between the two states occurs.

• If the stimulus configuration is highly asymmetric, the detected apparent motion is
oriented along the shorter edge of the stimulus.

• Transitions between the two states showhysteresis, i.e. they occur when the stimulus
is significantly beyond its symmetric configuration (which is indicated by the dashed
vertical lines in figure 8).
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Our neural model does not reproduce the spontaneous changes of percept that have
been found in psychological studies. Corresponding to the different theories mentioned in
section 1 such changes could be implemented by introducing feedback from higher cortical
areas or by adding neural saturation or stochastic processes. However, we decided not to
incorporate either of them because at this stage of work any choice would be arbitrary and
therefore not give further insight into neural processing in biological systems.

4. Main results of the analytical treatment

The properties of the model network developed in section 2 can in part be understood
analytically. In what follows, we are going to present the ansatz of our calculations and
their main results, while the reader is referred to the appendix for details.

We start by noting that expression (6) can be written as

q
(
x,x′,v′, t

) = ∫ +∞
−∞

dt ′ µ
(∣∣x′ − x∣∣) exp

(
− t − t

′

τ

)
θ
(
t − t ′) A[h (x′,v′, t ′)]

whereθ(t) denotes the Heaviside step function and exp[−(t − t ′)/τ ] θ(t − t ′) is the Green
function of the linear differential operator

D̂ := 1

τ
+ d

dt
.

We then find that by applyinĝD the system of integral equations (7) is transformed into the
system of differential equations

D̂hx±,y± (x, v, t) = D̂ Sx±,y± (x, v, t)−
∑
x′,v′

µ
(∣∣x′ − x∣∣)

×
{
A
[
hy+,x+

(
x′, v′, t

)]+ A[hy−,x− (x′, v′, t)]} (9)

where we have introduced the abbreviation

Sx±,y± (x, v, t) :=
∫ t

−∞
dt ′
∫ ∫

d2x ′ s
(
x′, t ′

)
ξx±,y±

(
x′ − x, v, t − t ′) .

The fact that the time evolution of the network activity can be described by a set of
differential equations reveals that the network dynamics do not have a ‘memory’. Rather,
at any given time the dynamics are completely determined by the momentary network state,
together with the stimulusS and its first derivative.

The weight of inhibitionµ(x) has been defined in (8) as a Gaussian and we have
mentioned that we use large values of the widthσinh. Let us therefore approximateµ(x)
by a constantµ. We restrict the subsequent analysis to the case of a stimulus for which
Sx±,y±(x, v, t) =: S(t) is equal for all motion detectors. Then equation (9) yields

D̂hx±,y± (x, v, t) = D̂S (t)− µ
∑
x′,v′

{
A
[
hy+,x+

(
x′, v′, t

)]+ A[hy−,x− (x′, v′, t)]} .
It is easy to see that the right-hand side of this expression is independent ofx andv and
thus is identical for all detectors of horizontal or vertical motion, respectively. The same
is, of course, true for the original integral equation (7). As a consequence the membrane
potential is equal for all cells dedicated to horizontal or vertical motion, respectively. This
means we can drop the variablesx and v as well as the signs ‘+’ and ‘−’ in the upper
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indices and end up with only two equations

dhx (t)

dt
= D̂S (t)− ν A[hy (t)]− hx (t)

τ
(10)

dhy (t)

dt
= D̂S (t)− ν A[hx (t)]− hy (t)

τ
(11)

where the coupling factorν arises from multiplyingµ by the number of detectors tuned
to motion in thex-direction or the number of detectors tuned to motion in they-direction.
Since these two numbers are equal in our model, the same valueν appears in both equations.
The quantityhx is coupled tohy throughA (hy) and, converselyhy is influenced byA (hx),
i.e. detectors of horizontal and vertical motion inhibit one another.

By reducing (9) to two differential equations in the two quantitieshx andhy we have
shown that in the case of a constant inputD̂S and a homogeneous inhibitionµ our network
is equivalent to a model of two formal graded-response neurons with membrane potential
hx andhy which both receive the same external inputS and inhibit each other via synapses
of weight ν (cf figure 9). Equations (10) and (11) can further be simplified by introducing
the abbreviations

x := β (hx − θ)
y := β (hy − θ)
p := β (τ D̂S − θ)
ε := βτν

which leads to

τ
dx

dt
= p − x − ε

2
(1+ tanhy) (12)

τ
dy

dt
= p − y − ε

2
(1+ tanhx) . (13)

For constantp, this system of differential equations is formally identical to a special case
of the continuous Hopfield model for two neurons (Hopfield 1984). Sincep is determined
by the external stimuluŝDS it will henceforth be termed ‘network input’. The mutual

xA(h A(h

y

y

ν

ν

) )

S

x

Figure 9. Model of two neurons which both receive the
same external inputS and inhibit each other via synapses
of weight ν.
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inhibition which is present in the network is contained inε, the bifurcation parameter to
be. A detailed analysis of equations (12) and (13), carried out in the appendix, yields the
following results for any fixed value ofp:

• As long as the inhibition, i.e.ε is weak enough, there is exactlyonefixed pointx(t) ≡ x0,
y(t) ≡ y0 = x0. This fixed point is stable and is implicitly given by

x0 = p − 1
2ε (1+ tanhx0) .

• Whenε reaches some critical valueεcr a supercritical pitchfork bifurcation occurs, i.e.
two additional fixed pointsx(t) ≡ x1, y(t) ≡ y1 andx(t) ≡ x2, y(t) ≡ y2 emerge with
x1 < x0 < x2 andy1 = x2 as well asy2 = x1. In this regime the new fixed points are
stable, while the original one has become unstable. The criticalε = εcr can be found
by solving the equations

εcr =
2
(
p − xcr

0

)2

2
(
p − xcr

0

)− 1
tanhxcr

0 = 1− 1

p − xcr
0

.

• With increasingp the value ofεcr decreases as long asp < 1 and increases ifp > 1.
The minimum value atp = 1 is εcr = 2. Figure 10 shows two plots ofεcr as a function
of p.

Because equations (12) and (13) are directly related to the continuous Hopfield model
its Liapunov function (Hopfield 1984) is directly applicable. We therefore know that for
constant network inputp the system will always converge to one of its fixed points.

If no stimulus is presented to our network or the stimulus presented does not change
in time, the external inputS of the motion detectors drops to zero, which is below the
thresholdθ . Hencep = β(S − θ) is negative andεcr decreases with increasingp. We
set the inhibitory weightµ such that 2< ε < εcr. Consequently, ifp is raised, then the
system will eventually enter the critical region becauseεcr drops belowε; see figure 10.
When this happens the system will start drifting to one of the new fixed points, i.e. the
detectors of horizontal motion and those of vertical motion will approach different levels
of activity. Of course, for the real SAM stimulus the model of two-neurons treated above
does not correctly describe the network response, since in this case the assumptions of an
equal input to all neurons and a spatially constant inhibition are not valid. However, if we
are willing to accept the predictions of this simple model as a rough approximation to the
real behaviour, we are able to achieve a qualitative understanding of how hysteresis can
emerge.

Suppose the first frame (first pair of bright spots) of the symmetric version of the SAM
stimulus has been set and for some reason the neurons dedicated to horizontal motion are
at a higher level of activity than those dedicated to vertical motion. The network input
p is relatively low so thatε < εcr and the membrane potential of all motion detectors
approaches the same value. When the stimulus switches to the second frame (second pair
of bright spots) they receive an external input (cf figure 6), which is equal for both categories
of detectors because the stimulus is symmetric. Due to this external input the system is
shifted into the critical regime and the membrane potentials begin to drift apart towards
values corresponding to one of the system’s new fixed points. Since initially the detectors
of horizontal motion are at a higher level of activity their membrane potential approaches
the higher value and thereby inhibits the detectors of vertical motion, whose membrane
potential approaches the lower level.

In this way, the network continues to signal a horizontal motion for the SAM until the
asymmetry of the neural activations is overcome by a sufficient asymmetry of the network
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Figure 10. Critical value εcr of the
inhibitory weight ε as a function of the
network inputp. For ε 6 εcr there is
only one fixed point of the system of
differential equations (10) and (11), for
ε > εcr there are three fixed points, two
of which are stable. The lower panel is
an enlargement of part of the upper one.

input. Such an asymmetry can be inferred by modifying the geometry of the SAM stimulus.
Our motion detectors are organized in such a way that they prefer to ‘see’ an apparent motion
along the shorter edge, i.e. the corresponding cells receive a stronger external input, which is
due to the definition (3) of the spatial part of the receptive fields. Therefore, if the vertical
edge of the stimulus becomes sufficiently short compared with the horizontal edge, the
detectors of vertical motion will generate a sufficiently strong output to force the network
into a state where neurons dedicated to vertical motion are at a higher level of activity. At
this point an equivalent line of arguments makes clear that the network will now indicate
vertical motion until the stimulus geometry has again changed to a configuration of a very
short horizontal edge. This effect is exactly what we refer to as ‘hysteresis’.

5. Conclusions

In the investigation presented here we have developed a microscopic neural model of the
stroboscopic alternative motion (SAM). It is based on rate coding and motion-sensitive cells
with spatiotemporal receptive fields qualitatively similar to those proposed by Wimbauer
et al (1994, 1996), which emerge from a Hebbian learning rule. As to the interactions
between these motion detectors one is dependent on reasonable assumptions because of the
lack of unambiguous experimental data. We have decided to introduce a reciprocal inhibition
between cells tuned to orthogonal directions. This seems to be biologically plausible and is
analogous to the mexican-hat-like distribution of weights presented by Somerset al (1995)
in their model of orientation selectivity. Note that we do not use any kind of fast-learning
synapses.
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Despite its simplicity, the network reproduces the main psychological results concerning
the SAM, namely the unambiguous interpretation of the stimulus, preferred detection of
motion along the shorter distance and hysteresis. Our analytical treatment has revealed that
these properties are due to the following two essential ingredients of the model:

• The spatio-temporal receptive fields of the neurons show two important features. First,
they enable the cells to ‘see’ the apparent motion inherent to the SAM. In particular,
they are large enough to bind corresponding points of the stimulus. Second, they induce
an input to the neurons which is the larger the closer corresponding points are together.

• The reciprocal inhibition of cells tuned to orthogonal directions is below a critical
strength if no stimulus is present, whereas the network becomes over-critical when
the neurons are sufficiently stimulated. In the former case the detectors of horizontal
and those of vertical motion approach the same level of activity. The latter case is
characterized by the fact that the two classes of detectors drift towards different levels of
activity. One of the groups will exhibit a relatively high firing rate, thereby suppressing
neurons of the other class to a lower level of activity.

The above requirements are not very restrictive, i.e. the operation of the network is not
limited to the special parametrizations we have chosen for our simulations. Rather, they
can be regarded as realizations of quite general and plausible ideas, which, we hope, can be
verified experimentally in the near future. Replacing the pools of motion detectors by pools
of neurons signalling the overlap between the external stimulus and some given patterns
we could apply our model to the perception of ambiguous figures. These facts put a strong
emphasis on the biological relevance of the model.

The network we have analysed in this paper consisted of neurons sensitive to horizontal
or vertical motion only and the strength of inhibition was approximately constant in
space. Future studies can drop these simplification and investigate larger networks which
are presented more complicated stroboscopic stimuli. One can think of a whole variety
of interesting configurations of stimuli allowing for a detailed comparison between the
computational model and psychological experiments.

Appendix. Analytical treatment

In this appendix we present the details of the calculations leading to the results of section 4.
There it was demonstrated that the system of integral equations (7) can be transformed into
the system of differential equations (9). Furthermore, in the case of a spatially constant
inhibition µ and a stimulusS that is equal for all motion detectors, the description of our
network reduces to a model of two neurons with membrane potentialshx andhy governed
by (10) and (11). Subsequently we derive the fixed-point equations for this effective two-
neuron model and use bifurcation theory to analyse existence and stability of fixed points
in dependence on the mutual inhibition and the network input.

A.1. Fixed-point equations

In section 4 we have already introduced new variables

x := β (hx − θ) y := β (hy − θ)
p := β (τ D̂S − θ) ε := βτν
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and obtained

τ
dx

dt
= p − x − ε

2
(1+ tanhy) (A1)

τ
dy

dt
= p − y − ε

2
(1+ tanhx) (A2)

which arise from equations (10) and (11). In what follows, we will always assumeε > 0,
i.e. we restrict the analysis to a system of neurons withinhibitory interactions.

To find the fixed points(x0; y0) of these differential equations we set dx/dt = 0 and
dy/dt = 0 and obtain the fixed-point equations

x0 = p − 1
2ε (1+ tanhy0) (A3)

y0 = p − 1
2ε (1+ tanhx0) . (A4)

From symmetry it is obvious that for a given fixed point(x0, y0) one can find a second one
by interchangingx0 andy0, which is different from the first one ifx0 6= y0. Moreover, it is
clear that the condition (A3) and (A4) imply dp/dt = 0.

A.2. Linear stability analysis

Suppose now that we have found a fixed point(x0, y0). We linearize (A1) and (A2) in the
neighbourhood of(x0, y0) and find

τ
d

dt
(x − x0) = − (x − x0)− ε

2
sech2 (y0) (y − y0) (A5)

τ
d

dt
(y − y0) = − (y − y0)− ε

2
sech2 (x0) (x − x0) . (A6)

Using vector notation with

x :=
(
x

y

)
x0 :=

(
x0

y0

)
C := −1

τ

(
1 1

2εsech2y0

1
2εsech2x0 1

)
we can write equations (A5) and (A6) in the simple form

d

dt
(x− x0) = C (x− x0)

a first-order differential equation which describes thelocal behaviour of our formal system
of two neurons in a neighbourhood of a fixed pointx0 = (x0, y0).

In order to derive a stability criterion for this fixed point, we have to solve for the
eigenvaluesλ of the matrixC. They are given by

det(C − λ · 11) =
(
−1

τ
− λ

)2

− ε2

4τ 2
sech2 (x0) sech2 (y0) = 0

yielding

λ1,2 = −1

τ
± ε

2τ
sech(x0) sech(y0) . (A7)

The corresponding eigenvectorsx1 andx2 are easily found from(
C − λ1,211

)
x1,2 = 0

and read

x1 =
(

sechy0

−sechx0

)
x2 =

(
sechy0

sechx0

)
.
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A fixed point is stable if both eigenvalues are negative, because then any small
perturbation will decay exponentially. On the other hand, if one or both of the eigenvalues
are positive a small perturbation will, as long as the linear approximation is valid, increase
exponentially. Sinceε > 0 andτ > 0 it is evident that the second term of (A7) as well as
1/τ are always positive so thatλ2 (corresponding to the ‘−’ sign) is always negative. For
λ1 to be negative, i.e. the fixed pointx0 to be stable, we require that

1
2εsech(x0) sech(y0) < 1. (A8)

A.3. Existence of fixed points

In the preceding section we assumed the existence of a fixed point and the analysis of (A1)
and (A2) provided us with a criterion for stability. Here we are going to determine how
many fixed points exist. We define

f (x0) := tanhy0 (x0) (A9)

wherey0 is considered as a function ofx0, given by (A4), and writteny0 = y0(x0). The
first and the second derivative off are

f ′ (x0) = − 1
2εsech2 (x0) sech2 (y0)

f ′′ (x0) = ε sech2 (x0) tanh(x0) sech2 (y0)− 1
2εsech4 (x0) sech2 (y0) tanh(y0) .

Taking advantage of (A9), from (A3) we obtain a fixed-point equation forx0:

f (x0) = −2

ε
x0+ 2p

ε
− 1. (A10)

Both sides of this equation consist of continuous functions, withf (x0) being bounded by
+1 and−1, whereas the right-hand side approaches±∞ for x0 → ±∞. Consequently,
there is at least one point of intersection between their graphs or, in other words, at least
one fixed point (cf figure A1, left panel).
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2

-2 -1 1 2
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Figure A1. Left panel: the intersection of the graph off (x) (solid line) with that of−2x − 1
(dashed line) represents the solution of (A10) forε = 1 andp = 0. Since there is alwaysat
least one intersection between the graphs of a bounded function and a straight line with non-zero
slope, there is always at least one solution of (A10). Right panel: the solution of (A12) can
be visualized as the intersection of the graphs of the bounded functionf (x) (solid line) with
the unbounded function sinh(2x)/ε (dashed line). For this plot,ε = 1 andp = 0. As the
slopes of the two functions have opposite sign for anyp andε > 0 there is alwaysexactly one
intersection. In both panels the horizontal axis is thex-axis.
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As the solutions of (A10) are the intersections of a monotonically decreasing but
bounded functionf with a straight line of negative slope, more than one fixed point may
exist if f (x0) turns out to have points of inflexion. Let us therefore look for zeros off ′′(x0),
which are solutions of

1
2εsech4 (x0) sech2 (y0) tanh(y0) = ε sech2 (x0) tanh(x) sech2 (y0) (A11)

or, after dividing by(ε2/2) sech4(x0)sech2(y0) and substitutingf (x0) = tanh(y0),

f (x0) = 2

ε
sinh(x0) cosh(x0) = 1

ε
sinh(2x0) . (A12)

Differentiating the functions on both sides of this equation, one finds that their slopes
have opposite sign. Together with the fact that they both are continuous and that sinh(2x0)

approaches±∞ for x0 → ±∞, it follows thatf ′′(x0) has exactly one zero (cf figure A1,
right panel). On the other hand, sincef is continuous and bounded, has a continuous
first derivative, and limx0→−∞ f (x0) 6= limx0→+∞ f (x0), there must be at least one point
of inflexion. At any point of inflexion, however, we havef ′′(x0) = 0, becausef ′′(x0)

is continuous. So, finally, we knowf (x0) to have exactly one point of inflexion, which
implies that equation (A10) gives rise to either 1, 2, or 3 fixed points. We are now interested
in the number of fixed points in dependence onε.

For x0 = y0 the fixed-point equations (A3) and (A4) reduce to

x0 = p − 1
2ε (1+ tanhx0) . (A13)

Sincey(x) = p − 1
2ε(1+ tanhx) is a monotonically decreasing function, there is exactly

one intersection with the straight liney = x yielding exactly one solution of (A13) forany
value ofε. For very small (positive) values ofε equation (A10) yields only one fixed point,
which must therefore correspond to the solution of (A13). Moreover, relation (A8) shows
that this fixed point is stable.

As explained above, at most two additional fixed points can arise asε increases. Since
there is exactly one fixed point withx0 = y0 for any value ofε, namely the solution of (A13),
we are bound to findx0 6= y0 for any additional fixed point(x0, y0). It has been stated
before (in section A.1) that, because of the symmetry of the fixed-point equations, from any
given fixed point(x0, y0) with x0 6= y0 a second one can be constructed by interchanging
x0 andy0. Additional fixed points can therefore only arise as a pair{(x0, y0), (y0, x0)}.

Altogether, these considerations lead to the result that our system has exactly one fixed
point for sufficiently small values ofε and might undergo a supercritical pitchfork bifurcation
onceε reaches a critical valueεcr. At the bifurcation point the fixed point withx0 = y0

becomes unstable. Hence we can obtain the critical valueεcr from the stability criterion (A8)
by requiring

1
2εcrsech

(
xcr

0

)
sech

(
ycr

0

) = 1
2εcrsech2

(
xcr

0

) = 1. (A14)

Using equations (A13) and (A14) one can easily derive that the bifurcation point is given
by

εcr =
2
(
p − xcr

0

)2

2
(
p − xcr

0

)− 1
(A15)

with

tanhxcr
0 = 1− 1

p − xcr
0

(A16)

as stated in section 4.
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A.4. Dependence ofεcr on the network input

The above calculations have revealed the existence of a critical valueεcr of the inhibitory
weightε at which the system of differential equations (A1) and (A2) changes its properties.
Whereas there is exactly one fixed point forε 6 εcr two additional fixed points emerge for
larger values ofε. Here we will study the dependence ofεcr on the network input.

Differentiating equation (A16) with respect top, we obtain

d

dp
tanhxcr

0 =
1(

p − xcr
0

)2

(
1− dxcr

0

dp

)
yielding

dxcr
0

dp
= 1(

p − xcr
0

)2
sech2xcr

0 + 1
.

Since(p − xcr
0 )

2 > 0 and sech2xcr
0 > 0 the denominator on the right-hand side exceeds 1

and hence

0<
dxcr

0

dp
< 1. (A17)

From equation (A15) we now obtain

dεcr

dp
=
{

1− 1[
2
(
p − xcr

0

)− 1
]2

}(
1− dxcr

0

dp

)
and find

dεcr

dp


< 0 if p − xcr

0 < 1

= 0 if p − xcr
0 = 1

> 0 if p − xcr
0 > 1

(A18)

because equation (A16) impliesp−xcr
0 > 0 and the inequality (A17) yields d(p−xcr

0 )/dp =
1− dxcr

0 /dp > 0. As a consequence of (A16) we havexcr
0 = 0 for p − xcr

0 = 1, so that
equation (A18) is equivalent to

dεcr

dp


< 0 if p < 1

= 0 if p = 1

> 0 if p > 1.

At p = 1 the critical value of the inhibitory weight takes its minimumεcr = 2. Figure 10
shows two plots ofεcr as a function ofp.
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